Definition (Reflexive Space)
Let X be a normed space and
$$Q: X \rightarrow X^{**}$$
 be the
canonical map, i.e., $Q(x)(\pi^*) = x^*(x)$. X is called
reflexive if Q is surjective.

Rmk: (i) Q is an isometry
(ii) Q is surjective
$$\implies X = X^{**}$$

(iii) $X = X^{**} \not \Rightarrow Q$ is surjective

Proof: Let
$$\pi: X \to X/M$$
 be the nodural projection,
 $Q_X: X \to X^{**}, Q_M: M \to M^{**}, Q_{XM}: X/M \to (X/M)^{**}$
the canonical maps.
Goal: For any $4 \in X^{**}$, find an $x \in X$ such
that $Q_X(x) = 4$.

Since
$$\pi^{**}(\Psi) \in (X/M)^{**}$$
 and Q_{XM} is surjective,
there exists some $x_0 \in X$ such that $Q_{XM}(\pi_0+M) = \pi^{**}(\Psi)$.
Then $\pi^{**}(\Psi)(\overline{x}^*) = Q_{XM}(\pi_0+M)(\overline{x}^*) = \overline{x}^*(\pi_0+M)$ for
all $\overline{x}^* \in (X/M)^*$.
Note that $\pi^{**}(\Psi)(\overline{x}^*) = \Psi(\pi^*\overline{x}^*) = \Psi(\overline{x}^*\circ\pi)$
and $\overline{x}^*(\pi_0+M) = \overline{x}^*(\pi(x_0)) = \overline{x}^{*\circ}\pi(\pi_0) = Q_X(x_0)(\overline{x}^{*\circ}\pi)$.
Thus $\Psi(\overline{x}^*\cdot\pi) = Q_X(x_0)(\overline{x}^{*\circ}\pi)$ for all $\overline{x}^* \in (X/M)^*$.
Then $\Psi = Q_X(x_0)$ on M^{\perp} where
 $M^{\perp} := ker(M) = \{\overline{x}^* \in X^*: \overline{x}^*(M) = 0\}$
 $= \{\overline{x}^{*\circ}\pi: \overline{x}^* \in (X/M)\}^*\}$
Therefore, $\Psi - Q_X(x_0) = 0$ on M^{\perp} , i.e.,
 $\Psi - Q_X(x_0)$ is well-defined on X^*/M^{\perp} .
Recall rediviction $\widehat{Y}: X^*/M^{\perp} \rightarrow M^*$
is an isomorphic isometry (See Lemma 5.8)
Then $(\Psi - Q_X(x_0)) \circ \widehat{Y}^{-1} \in M^{**}$.
Since M^* is reflexive, there exists $m_0 \in M$ such
that $(\Psi - Q_X(x_0)) \circ \widehat{Y}^{-1} = Q_{XM}(m_0)$.

Thus
$$\Psi - Q_{X}(x_{0}) = Q_{X/M}(m_{0}) \circ \widehat{\gamma}$$
 on X^{*}/M^{\perp} .
For any $\chi^{*} \in \chi^{*}$, $\chi^{*} + M^{\perp} \in \chi^{*}/M^{\perp}$.
Then $\Psi(\chi^{*}) - Q_{X}(x_{0})(\chi^{*}) = (\Psi - Q_{X}(x_{0}))(\chi^{*})$
 $= Q_{X/M}(m_{0})(\chi^{*}/M)$
 $= \chi^{*}/M(m_{0})$
 $= \chi^{*}(m_{0})$
 $= Q_{X}(m_{0})(\chi^{*})$
Therefore $\Psi(\chi^{*}) = Q_{X}(\chi^{*})(\chi^{*})$ for add $\chi^{*} \in \chi^{*}$

Therefore, $\Psi(x^*) = Q_X(x_0+m_0)(x^*)$ for all $X^* \in X^*$ Hence, $\Psi = Q_X(x_0+m_0)$.

14	-	-
	-	